
A Browser-based Middleware for Service-Oriented Rich Client

Qi Zhao, Xuanzhe Liu*, Jiyu Huang, Gang Huang

Key Laboratory of High Confidence Software Technologies, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871,

China;

{zhaoqi06, liuxzh, huangjy07, huanggang }@sei.pku.edu.cn

Abstract
Along with the proliferation of web-delivered services

and the wide adoption of popular Web technologies, it has

been an emerging development style that composes

service-oriented applications with rich user experiences in

the web browser. Currently, these service-oriented rich

client (SoRC) applications are usually tightly coupled

with specific requirements and scenarios, without the

solutions of common problems for development,

deployment and operation. It leads to the fact that SoRC

applications are exactly done in an ad-hoc manner. In this

paper, we propose a new type of middleware, which is

embedded in web browsers and encapsulates reusable

solutions for common problems. This browser-embedded

middleware consists of a container managing component

instances, a set of communication mechanisms

coordinating both browser-server and inter-browser

interactions. Different SoRC applications can be

constructed more easily based on the middleware. In the

case study, we construct a mashup environment, called

iMashup, with the middleware and compare it with some

popular environments. The comparison shows that

iMashup provides composition capabilities with less

implementation efforts, occupies much lower memory

consumption and achieves more scalability.

Keywords
service composition, rich client, mashup, middleware

1. Introduction
Over the past years, browser-server architecture was

evolved a lot. At server-side, many Web sites and

applications, such as Google, Amazon and Facebook, has

adopted service-oriented architecture (SOA) more or less.

Data and functionalities can be accessed through Web-

delivered services (SOAP and RESTful Web services,

RSS/Atom feeds, or open JavaScript APIs). At client-side,

although web browser was originally a pure thin client to

visit static web pages, it has already become much

“richer” by offering a series of powerful hosted

mechanisms, such as Dynamic HTML (DHTML) and

JavaScript engine. This makes the browser be capable of

 Corresponding author: liuxzh@sei.pku.edu.cn

serving as a “rich client platform”. Therefore developers

are now assembling various services to create a plethora

of service-oriented rich client (SoRC) applications to

solve all types of problems [1].

Figure 1. Service-Oriented Rich Client

Service-oriented rich client aims at supporting service

discovery, subscription and composition in web browsers.

Figure 2 shows the trend toward the continuously

increasing complexity of SoRC application:

 Some relatively simple SoRC applications, such as

Google map or Yahoo weather, only subscribe (use)

certain built-in web-delivered services in web

browser.

 More complex SoRC applications, such as Web

portal or Web OS [10], allow users to not only

subscribe built-in services, but also they allow users

to discovery required service and import them into

the applications in browser.

 The browser-based mashup applications, e.g.

HousingMaps and WeatherBonk [11], is a kind of

SoRC application, which subscribes services and

assembles them to create a new service in browser.

 The most complicated SoRC applications fully

support service discovery, subscription and

composition. These applications are assembled by a

series of mashup editor services, through which

users can discover, subscribe and assemble other

services to create their own mashup applications.

Thus, these applications can be considered as an

incubator of browser-based mashup applications [6].

mailto:liuxzh@sei.pku.edu.cn

Figure 3. Many common problems for developing,

deploying and operating SoRC applications

Due to the complexity of SoRC, there are many

common problems for developing, deploying and

operating SoRC applications, including utilization of rich

client features, interaction with remote and local services,

client-side data management, components composition

and quality assurance, as shown in Figure 3. Poor

solutions for these common problems definitely put

negative impacts on SoRC applications.
However, the hosted mechanisms of web browser are

designed for general purposes and cannot deal with these

common problems directly. Hence SoRC vendors have to

handle them. Since SoRC applications are just in a very

early stage, the solutions for common problems are

specific to the applications and tightly coupled with their

own requirements and scenarios. Obviously, such an ad-

hoc manner makes it hard and even impossible for a

single vendor to produce optimal or best-of-the-breed

solutions. But the monolithic and private design and

implementation of each application prevent vendors from

sharing and collaborating on the private solutions. On the

other hand, building up new SoRC applications has to

implement these common solutions again and again. It

increases the cost of building new applications.

In this paper, we propose a new type of middleware,

which is embedded in the browser and encapsulates the

solutions of common problems for developing, deploying

and operating SoRC applications. Such middleware

provides an open way for producing the optimal solutions

in most cases. We implement a browser-based service

composition environment, iMashup 1 , based on the

middleware, and compare it with some other

environments [3]. The comparison and evaluation results

demonstrate the values of this middleware, that is, better

solutions for common problems and easy construction of

SoRC applications.

The rest of the paper is organized as follows. Section 2

provides the overview of the browser middleware. Section

3 discusses the implementation of the middleware.

Section 4 briefly introduces our case study for this

middleware, iMashup. Finally, we give some future work

in Section 5.

2. Browser Middleware Overview
Figure 4 provides a general overview of the proposed

browser middleware.

1 It can be downloaded from http://code.google.com/p/imashup/

Figure 2. The trend toward the increasing complexity of SoRC application

http://code.google.com/p/imashup/

The browser middleware is built on the top of the

hosted mechanisms of web browser, such as HTML and

JavaScript engine. It is mainly composed of four parts:

The container is in charge of component management.

Its responsibility is to manage the definitions and the

instances of component. The container need not consider

the concurrency control of component instances, since the

JavaScript engine in the browser runs in single-thread;

The communication mechanisms assist components

to communicate with other components inside web

browser and web-delivered services on servers. The basic

features of the communication mechanisms, such as event

bus, cross-domain and OAuth handler, have been

described and implemented in [3]. However, the

communication mechanisms also provide many advanced

features, such as on-the-fly composition or service data

cache, which are not included in existing JavaScript

frameworks. Depending on the different communication

types, the communication mechanisms can be divided into

two parts:

 The intra-browser communication mechanisms
offer some mechanisms to implement an event-based

composition model which makes components

communicate with others in the same web browser.

 The browser-server communication mechanisms
provide the solutions of common problems for

communication between the browser and web-

delivered services on servers. The mechanisms offer

a series of handlers supporting the common

capabilities for web-delivered services access.

The middleware provides a set of Application

Programming Interface (API) to expose its

functionalities. Developers can build SoRC applications

directly based on these APIs.

3. Implementation of the Browser

Middleware
3.1 Component Model

Components in the browser middleware encapsulate

both the application logic and UI [7]. These components

consist of the interface and the implementation. The

interface of components comprises the UI (user interface)

and the programming interface. The programming

interface exposes application logic. The UI responds to

users’ actions and invokes the corresponding functions in

the implementation. The component model is shown in

Figure 5.

Figure 5. Component Model

The implementation of components adopts the Model-

View-Controller pattern. The model implements

application logic by invoking web-delivered services. The

Figure 4. The Overview of the Browser Middleware

view is a fragment of HTML which is rendered and

displayed when components are instantiated. The

controller manages the interaction logic between model

and view.

The programming interface exposes the application

logic of components. It consists of methods and events.

Methods can invoke services and query and modify the

component state. Events notify changes of the component

state and can be published into the event bus. The UI is

implemented by the view part of component. When

developers assemble the components, they can determine

whether the UI of components should be shown or not

(hidden).

3.2 Event-based Composition Model

The intra-browser communication mechanisms provide

an event-based publish-subscribe composition model. The

event-based composition model is well suited to browser-

based composition environments, since the nature of the

browser is strongly event-based [2].

Figure 6. Event Bus and Event Model

To support event-based composition model, the intra-

browser communication mechanisms provide a unified

event model for all events of components. The event

model comprises the name of event, the reference of

source instance triggering this event and a hash map

containing event parameters.

An event bus which supports publish-subscribe event

binding is also provided by the intra-browser

communication mechanisms. The event bus has some

channels which are set by developers. The events of

components can be published to these channels. And the

methods of components can subscribe channels.

When an event is triggered, the component sends the

event to the specific channel in the event bus. When an

event arrives, the event bus will find all subscribe

methods with the given channel, traverses the found

methods and invokes them with the event as input

parameter.

3.3 Advenced Features of Communication

Mechanisms
3.3.1 On-the-fly composition

Unlike traditional off-the-shelf components that need

compilation and deployment, services are actively

running entities. Such a significant difference implies that

the separation between design-time and run-time is not an

inherent nature of web-delivered service composition. In

other words, it is possible to assemble services in an on-

the-fly manner.

The browser middleware supports an on-the-fly

approach to service composition [5][6]. This approach

does not distinguish the design-time and run-time of

services and their composition so that developers can

qualify the results in “what you see is what you get”

manner when services are selected or assembled.

Figure 7. On-the-fly Approach Overview

Figure 7 gives an overview of the on-the-fly service

composition approach. Components in the browser

middleware are not distinguished as design-time and run-

time. Once loaded, each component is at runtime with full

and actual functionality. Therefore developers can qualify

components by really using it. On the other hand, since

components are always at runtime. When developers

assemble them, components can be connected and

services can be invoked just-in-time. This enables

developers to qualify composition immediately.

3.3.2 Model Checking for Quality

Figure 8. An incorrect status of service-oriented rich

client

Components in the browser middleware are developed

by independent organizations and individuals due to the

open nature of Web and SOA. As a result, when these

components are assembled, the undesired interactions will

take place and bring negative impacts. For example,

Figure 8 displays an incorrect status of SoRC application

which is due to the undesired order of Ajax invocations'

responses [8].

The browser middleware supports a model-checking

based approach for qualifying service composition [4]. At

first, the behavior of SoRC application will be

automatically specified by analyzing the JavaScript codes

downloaded. And it will be combined with the pre-

defined environment behavior so that a precise and

complete enough behavior model of the application can

be generated automatically. With user-defined constraint

and refinement specifications, the behavior model is

automatically translated to the formal specification

(Promela for Spin) as the input of the model checker. If

the model is flawed, the SoRC application has correctness

and reliability problems.

3.3.3 Service Cache

Due to the fact that a number of web-delivered

services fetch data from servers, SoRC applications

should employ browser cache in order to improve the

performance issues (e.g. traffic and latency). To this end,

cache strategies are customized by service providers and

brought into effect by browsers. Such pattern of cache

leaves little space for developers, who are exactly

responsible of composing services, to carry out their own

cache strategies. The absence of customized cache

strategies may cause unnecessary communications or

reduce user experience.

Figure 9. Cache Framework at Run-time

For addressing this limitation, the browser middleware

includes a cache framework for composing web-delivered

services. The cache framework enables developers to

customize their own cache strategies, such as expiration

time, cache granularity and so forth. And then at run-time,

as shown in Figure 9, the framework first intercepts user

requests and then query the cache repository whether a

cache hit or not. If a cache data is hit, the framework

returns the desired data. If no hit produced, the framework

invokes the remote services, parse and store the returned

data into cache repository for future use.

3.3.4 SoRC and Business Process Integration

In practice, many business process scenarios require

user interaction. However, human computer interactions

(HCI) are not covered by current server-side service

composition approaches, such as WS-BPEL, which are

primarily designed to support automated business

processes. To our experience, SoRC applications are well

suited for HCI process composition, because of its

advantages in rich user experience, user friendliness, UI

deep integration and many other features, which are

required by HCI process composition.

Figure 10. The rich client and business process

integration mechanism.

The browser middleware provides a SoRC and

business process integration mechanism to support HCI in

business process. The mechanism generates SoRC

application stubs by parsing the input and output of HCI

activities in business process. Developers can refine the

stubs to build user-friendly SoRC applications. When the

business process running to a HCI activity, the integration

mechanism will create an application instance, send the

input parameters and notify users of waiting process.

When users complete the HCI activity, the mechanism

will get the output parameters and return them to the

process. The process will be continued its execution.

4. Case Study: iMashup
Owing to the limitation of space, we just give a brief

introduction of our case study. More detail about the case

study can be found in [9].

To evaluate our browser middleware, we implement

iMashup, a mashup environment based on the middleware.

To our experience, the main work of environment

implementation is building GUI, since the middleware

provides most functions an environment required. We

compare iMashup with other environments. We focus on

two questions: How is the overhead of iMashup? How is

the scalability of iMashup?

4.1 Overhead of iMashup
For our first question, the overhead of iMashup, we

measured the size of files downloaded and the memory-

consumption. We also compare the result with the

overhead of three other composition environments,

Microsoft Popfly, Intel Mash Maker and Yahoo! Pipes.

From the evaluation, the download size of iMashup is

the biggest of the four environments (iMashup, 603kb;

Microsoft Popfly, 347kb; Intel Mash Maker, 259kb;

Yahoo! Pipes, 112kb). iMashup is the biggest mainly

because the browser middleware is relatively big. It is a

typical result when we compare applications with and

without middleware. The size of our middleware is a bit

large, which means iMashup may start up slower than

other environments. Yet the evaluation indicates the

memory-consumption of iMashup is even smaller than the

others.

4.2 Scalability of iMashup
We consider scalability of iMashup from two

perspectives: How is the memory-consumption of

component instances in the container? How is the

performance of the event bus?

First, we measure the changing memory-consumption

of iMashup with increasing numbers of component

instances. We test a typically component, a Google

Weather component calling RESTful service. From the

evaluation result, the memory-consumption of 200

instances is lower than the consumption of Gmail, which

is a widely used web application with complex logic

executed in the browser.

Second, we measure the performance of the event bus.

For this measurement, we set a one-to-many event

binding: one event publisher and multiple event

subscribers. And then we trigger an event and measure the

time spent from the event triggered until the last

subscriber receives it. The evaluation result shows the

event bus routes the event extremely fast, i.e. handling

25,000 subscribers within 350 milliseconds.

5. Future Work: From Rich to Synergized
Web technologies proved to be well suited for building

browser-based SoRC applications. Therefore, many

frameworks and runtimes, or even operating system,

allow developers to use web technologies to build not

only rich client in web browser but also standalone and

mobile rich client. For example, Adobe Integrated

Runtime (AIR) is a cross-platform runtime environment

for building rich clients using web technologies, which

can be deployed as a desktop application. And Palm

webOS is mobile operating system, on which applications

are built using web technologies, but have access to

device-based services and data.

These frameworks and runtimes provide more

powerful capabilities to SoRC, such as local data access,

multi-thread JavaScript engine and so on. Standalone and

mobile SoRC applications meet new common problems

hence, such as intelligent installation and update, user

awareness, offline mode support and so on.

In the future, we will try to integrate new solutions of

these new common problems into the SoRC middleware

and make the middleware become synergized.

Acknowledgements
This work is partly sponsored by the National Key

Basic Research and Development Program of China

under Grant No. 2009CB320703; the National Natural

Science Foundation of China under Grant No. 60873060,

60933003; the High-Tech Research and Development

Program of China under Grant No. 2009AA01Z16; the

National S&T Major Project under Grant

No.2009ZX01043-002-002; the Program for New

Century Excellent Talents in University.

References
[1] E. Michael Maximilien, Ajith Ranabahu, Karthik

Gomadam, An Online Platform for Web APIs and Service

Mashups. IEEE Internet Computing, 2008.

[2] Jin Yu, Boualem Benatallah, Fabio Casati, Florian

Daniel, Understanding Mashup Development. IEEE

Internet Computing, 2008.

[3] Gang Huang, Qi Zhao, Jiyu Huang, Xuanzhe Liu.

Towards Service Composition Middleware Embedded in

Web Browser. International Conference on Cyber-

Enabled Distributed Computing and Knowledge

Discovery (CyberC), 2009.

[4] Xiangping Chen, Gang Huang, Hong Mei.

Towards Automatic Verification of Web-based SOA

Applications. 10th Asia Pacific Web Conference

(APWeb), 2008, pp. 528-536.

[5] Qi Zhao, Gang Huang, Jiyu Huang, Xuanzhe Liu,

Hong Mei, ,Ying Li, Ying Chen. A Web-Based Mashup

Environment for On-the-Fly Service Composition. SOSE

2008, pp. 32-37.

[6] Qi Zhao, Gang Huang, Jiyu Huang, Xuanzhe Liu,

Hong Mei, Ying Li, Ying Chen. An On-the-fly Approach

to Web-based Service Composition. Proceedings of IEEE

Service Congress and International Conference on Web

Services, 2008, pp 208-209.

[7] Qi Zhao, Gang Huang, Xuanzhe Liu, Jiyu

Huang, Towards a Component Model for Web-based

Service Composition. Journal of Frontiers of Computer

Science and Technology, 2008, 2 (4): 378-388.

[8] Qi Zhao, Jiyu Huang, Xiangping Chen, Gang

Huang, Feature Interaction Problems in Web-based

Service Composition. 10th International Conference on

Feature Interactions, 2009.

[9] Qi Zhao, Jiyu Huang, Gang Huang, Case Study:

iMashup, A Service Composition Environment based on

the Browser Middleware, Technical Report, 2009.

http://sei.pku.edu.cn/~zhaoqi06/case_study_imashup.pdf

[10] iGoogle, www.google.com/ig

[11] WeatherBonk, www.weatherbonk.com

http://sei.pku.edu.cn/~zhaoqi06/case_study_imashup.pdf
http://www.google.com/ig
http://www.weatherbonk.com/

